If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+26q=-33
We move all terms to the left:
q^2+26q-(-33)=0
We add all the numbers together, and all the variables
q^2+26q+33=0
a = 1; b = 26; c = +33;
Δ = b2-4ac
Δ = 262-4·1·33
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-4\sqrt{34}}{2*1}=\frac{-26-4\sqrt{34}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+4\sqrt{34}}{2*1}=\frac{-26+4\sqrt{34}}{2} $
| -7a+4=-10a+16 | | 0=2x^2-8x+10 | | -95+11x=209-5x | | (x+51)=(x+59) | | 81^x+4=729^3x-1 | | -2.7x+8.6=16.7 | | 120=4x-6(2+8x) | | -8x-2=-2 | | 43-9p=232 | | -5m+5=10 | | x+31/4=-81/3 | | 4x2-32=2x2 | | -4z+-102=-578 | | 11111111111111111111111x1=1111111111111111111111 | | 4x2-32+2x2=180 | | -3x+5(x-3)=-23 | | 80+7x=171 | | 2s+5=45 | | z62=85 | | 11=3-8k | | 900=25+25q | | 1x^2+2x=180 | | 0.50(10x-8)=5x+8 | | (3x+74)=(10x-3) | | 12-8+3x-x=35 | | 7x+25=137 | | 5=x−4 | | 60=80/t | | 170=(n-2)*180 | | –4−4c=–3c | | (6x3)+(6x1)=6x | | 20x+40=6x-2 |